June 03, 2019
해당 게시물은 Edwith에서 제공하는
머신러닝과 딥러닝 BASIC을 듣고 요약 정리한 글입니다.
import tensorflow as tf
import matplotlib.pyplot as plt
import random
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
learning_rate = 0.001
training_epochs = 15
batch_size = 100
X = tf.placeholder(tf.float32, [None, 784])
Y = tf.placeholder(tf.float32, [None, 10])
Xavier Initialization사용
5개의 Layer를 사용하는 Neural Network구성
W1 = tf.get_variable("W1", shape=[784, 512],
initializer=tf.contrib.layers.xavier_initializer())
b1 = tf.Variable(tf.random_normal([512]))
L1 = tf.nn.relu(tf.matmul(X, W1) + b1)
W2 = tf.get_variable("W2", shape=[512, 512],
initializer=tf.contrib.layers.xavier_initializer())
b2 = tf.Variable(tf.random_normal([512]))
L2 = tf.nn.relu(tf.matmul(L1, W2) + b2)
W3 = tf.get_variable("W3", shape=[512, 512],
initializer=tf.contrib.layers.xavier_initializer())
b3 = tf.Variable(tf.random_normal([512]))
L3 = tf.nn.relu(tf.matmul(L2, W3) + b3)
W4 = tf.get_variable("W4", shape=[512, 512],
initializer=tf.contrib.layers.xavier_initializer())
b4 = tf.Variable(tf.random_normal([512]))
L4 = tf.nn.relu(tf.matmul(L3, W4) + b4)
W5 = tf.get_variable("W5", shape=[512, 10],
initializer=tf.contrib.layers.xavier_initializer())
b5 = tf.Variable(tf.random_normal([10]))
hypothesis = tf.matmul(L4, W5) + b5
cost = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits_v2(logits=hypothesis, labels=Y)
)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for epoch in range(training_epochs):
avg_cost = 0
total_batch = int(mnist.train.num_examples / batch_size)
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
feed_dict = {X: batch_xs, Y: batch_ys}
c, _ = sess.run([cost, optimizer], feed_dict=feed_dict)
avg_cost += c / total_batch
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost))
print('Learning Finished!')
Epoch: 0001 cost = 0.291983139
Epoch: 0002 cost = 0.104170327
Epoch: 0003 cost = 0.070643487
Epoch: 0004 cost = 0.050214080
Epoch: 0005 cost = 0.040219263
Epoch: 0006 cost = 0.034975592
Epoch: 0007 cost = 0.030978311
Epoch: 0008 cost = 0.025430245
Epoch: 0009 cost = 0.026338585
Epoch: 0010 cost = 0.020523844
Epoch: 0011 cost = 0.017850943
Epoch: 0012 cost = 0.016786734
Epoch: 0013 cost = 0.016248527
Epoch: 0014 cost = 0.017074123
Epoch: 0015 cost = 0.011885058
Learning Finished!
correct_prediction = tf.equal(tf.argmax(hypothesis, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(
'Accuracy:',
sess.run(
accuracy, feed_dict={X: mnist.test.images, Y: mnist.test.labels}
)
)
Accuracy: 0.9731
Xavier Initialization를 사용해 더 Deep하게
Neural Network를 구성하였음에도 불구하고 정확도는
이전 게시글에서 작성한 것보다 낮게 나왔다.
이는 아마도 Overfitting이 발생한 상황으로 추측이 된다.
Overfitting을 방지하기 위해 Drop out이라는 방법을 사용할 수 있다.
r = random.randint(0, mnist.test.num_examples - 1)
print("Label: ", sess.run(tf.argmax(mnist.test.labels[r:r+1], 1)))
print(
"Prediction: ",
sess.run(
tf.argmax(hypothesis, 1), feed_dict={X: mnist.test.images[r:r+1]}
)
)
Label: [3]
Prediction: [3]
plt.imshow(
mnist.test.images[r:r + 1].reshape(28, 28),
cmap='Greys', interpolation='nearest'
)
plt.show()