February 27, 2019
해당 게시물은 Edwith에서 제공하는
머신러닝과 딥러닝 BASIC을 듣고 요약 정리한 글입니다.
n
개의 값을 예측할 때 사용
점수 -> Softmax function(점수) 확률
y_data
를 One Hot Encoding형식으로 사용
import tensorflow as tf
x_data = [
[1, 2, 1, 1],
[2, 1, 3, 2],
[3, 1, 3, 4],
[4, 1, 5, 5],
[1, 7, 5, 5],
[1, 2, 5, 6],
[1, 6, 6, 6],
[1, 7, 7, 7],
]
y_data = [
[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[1, 0, 0],
[1, 0, 0],
]
X = tf.placeholder("float", [None, 4])
Y = tf.placeholder("float", [None, 3])
nb_classes = 3
W = tf.Variable(tf.random_normal([4, nb_classes]), name="weight")
b = tf.Variable(tf.random_normal([nb_classes]), name="bias")
# tf.nn.softmax computes softmax activations
# softmax = exp(Logits) / reduce_sum(exp(Logits), dim)
hypothesis = tf.nn.softmax(tf.matmul(X, W) + b)
# Cross entropy cost / Loss
cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), axis=1))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost)
# Launch Graph
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for step in range(2001):
sess.run(optimizer, feed_dict={X: x_data, Y: y_data})
if step % 200 == 0:
print(step, sess.run(cost, feed_dict={X: x_data, Y: y_data}))
print('--------------')
# Testing & One-hot encoding
a = sess.run(hypothesis, feed_dict={X: [[1, 11, 7, 9]]})
print(a, sess.run(tf.argmax(a, 1)))
print('--------------')
b = sess.run(hypothesis, feed_dict={X: [[1, 3, 4, 3]]})
print(b, sess.run(tf.argmax(b, 1)))
print('--------------')
c = sess.run(hypothesis, feed_dict={X: [[1, 1, 0, 1]]})
print(c, sess.run(tf.argmax(c, 1)))
print('--------------')
all = sess.run(hypothesis, feed_dict={X: [[1, 11, 7, 9], [1, 3, 4, 3], [1, 1, 0, 1]]})
print(all, sess.run(tf.argmax(all, 1)))
/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters
0 10.825441
200 0.5142497
400 0.40053576
600 0.31531286
800 0.25503108
1000 0.22799751
1200 0.20637025
1400 0.18853818
1600 0.17353529
1800 0.16071984
2000 0.14964
--------------
[[1.8087681e-03 9.9818391e-01 7.2578459e-06]] [1]
--------------
[[0.91814363 0.07711903 0.00473736]] [0]
--------------
[[7.9262508e-09 3.0513588e-04 9.9969482e-01]] [2]
--------------
[[1.8087698e-03 9.9818391e-01 7.2578596e-06]
[9.1814363e-01 7.7118985e-02 4.7373576e-03]
[7.9262508e-09 3.0513588e-04 9.9969482e-01]] [1 0 2]